RMS value of alternating current : Derivation

Grade Notbook

Define rms value of alternating current

The effective or RMS (root mean square) value of an alternating current is the value of a direct current that would generate the same amount of heat in a resistor over the same period of time as the alternating current does. 

Formula of rms value of AC current 

\[I_{\text{rms}} = \frac{I_m}{\sqrt{2}}\]

For voltage:

\[V_{\text{rms}} = \frac{V_m}{\sqrt{2}}\]

Derivation of RMS value of alternating current 

Let the instantaneous value of alternating current be:

\[i(t) = I_m \sin(\omega t)\]

where:

\( i(t) \) is the instantaneous current,

\( I_m \) is the peak (maximum) current,

\( \omega \) is the angular frequency,

\( t \) is the time.

The RMS (Root Mean Square) value is defined as:

\[I_{\text{rms}} = \sqrt{\frac{1}{T} \int_0^T i^2(t) \, dt}\]

Substitute \( i(t) = I_m \sin(\omega t) \) into the formula:

\[I_{\text{rms}} = \sqrt{\frac{1}{T} \int_0^T I_m^2 \sin^2(\omega t) \, dt}\]

Factor out the constant \( I_m^2 \):

\[I_{\text{rms}} = \sqrt{\frac{I_m^2}{T} \int_0^T \sin^2(\omega t) \, dt}\]

Use the trigonometric identity:

\[\sin^2(\omega t) = \frac{1 - \cos(2\omega t)}{2}\]

Substitute into the integral:

\[I_{\text{rms}} = \sqrt{\frac{I_m^2}{T} \int_0^T \frac{1 - \cos(2\omega t)}{2} \, dt}\]

Simplify:

\[I_{\text{rms}} = \sqrt{\frac{I_m^2}{2T} \int_0^T \left(1 - \cos(2\omega t)\right) \, dt}\]

Integrate term by term:

\[\int_0^T \left(1 - \cos(2\omega t)\right) \, dt = \left[t - \frac{\sin(2\omega t)}{2\omega}\right]_0^T\]

Since \( \sin(2\omega T) \) over a full cycle \( T \) is 0:

\[\int_0^T \left(1 - \cos(2\omega t)\right) \, dt = T\]

Substitute back:

\[I_{\text{rms}} = \sqrt{\frac{I_m^2}{2T} \cdot T} = \sqrt{\frac{I_m^2}{2}} = \frac{I_m}{\sqrt{2}}\]

$\textbf{Therefore,}$

\[\boxed{I_{\text{rms}} = \frac{I_m}{\sqrt{2}}}\]